Global Division of Cohomology Classes via Injectivity

نویسنده

  • M. POPA
چکیده

The aim of this note is to remark that the injectivity theorems of Kollár and EsnaultViehweg can be used to give a quick algebraic proof of a strengthening (by dropping the positivity hypothesis) of the Skoda-type division theorem for global sections of adjoint line bundles vanishing along suitable multiplier ideal sheaves proved in [EL], and to extend this result to higher cohomology classes as well (cf. Theorem 4.1). For global sections, this is a slightly more general statement of the algebraic version of an analytic result of Siu [Siu] based on the original Skoda theorem. In §4 we list a few consequences of this type of result, like the surjectivity of various multiplication or cup-product maps and the corresponding version of the geometric effective Nullstellensatz.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Division of Cohomology Classes via Injectivity Lawrence Ein and Mihnea Popa

The aim of this note is to remark that the injectivity theorems of Kollár and EsnaultViehweg can be used to give a quick algebraic proof of a strengthening (by dropping the positivity hypothesis) of the Skoda-type division theorem for global sections of adjoint line bundles vanishing along suitable multiplier ideal sheaves proved in [EL], and to extend this result to higher cohomology classes a...

متن کامل

On a Curvature Condition that Implies a Cohomology Injectivity Theorem of Kollár-Skoda Type

The curvature condition for the singular Hermitian metric in a generalized L extension theorem on complex manifolds implies also a cohomology injectivity theorem in certain circumstances. This shows that the curvature condition is still available for the extension theorem in more general situations than before.

متن کامل

A Transcendental Approach to Kollár’s Injectivity Theorem

We treat Kollár’s injectivity theorem from the analytic (or differential geometric) viewpoint. More precisely, we give a curvature condition which implies Kollár type cohomology injectivity theorems. Our injectivity theorem is formulated for a compact Kähler manifold, but the proof uses the space of harmonic forms on a Zariski open set with a suitable complete Kähler metric. We need neither cov...

متن کامل

A Transcendental Approach to Kollár’s Injectivity Theorem Ii

We treat a relative version of the main theorem in [F2]: A transcendental approach to Kollár’s injectivity theorem. More explicitly, we give a curvature condition that implies Kollár type cohomology injectivity theorems in the relative setting. To carry out this generalization, we use Ohsawa-Takegoshi’s twisted version of Nakano’s identity.

متن کامل

De Rham Cohomology, Connections, and Characteristic Classes

The de Rham cohomology is a cohomology based on differential forms on a smooth manifold. It uses the exterior derivative as the boundary map to produce cohomology groups consisting of closed forms modulo exact forms. The existence of exact forms reflects ’niceness’ of the topology, in that a potential for closed forms can often be constructed by integrating them over some submanifold, if the ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008